Abrasion Properties of Window Films

Name: 3M Renewable Energy
Attn: Paul Neumann
Address: 3M Center, 235-3D-02
City, State, Zip: St. Paul, MN 55144

Date: July 3, 2014
Revision Date: September 18, 2014
Author: William Stegeman
Report Number: ESP017051P-Ultra Abr
Client Purchase Order Number: USMMNNY511T

It is our policy to retain components and sample remnants for a minimum of 30 days from the report date, after which time they may be discarded. The data herein represents only the item(s) tested. This report shall not be reproduced, except in full, without prior permission of Element Materials Technology.

EAR Controlled Data: This document contains technical data whose export and re-export/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval is required for the export or re-export/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

This project shall be governed exclusively by the General Terms and Conditions of Sale and Performance of Testing Services by Element Materials Technology. In no event shall Element Materials Technology be liable for any consequential, special or indirect loss or any damages
INTRODUCTION

This report presents the results of abrasion resistance tests conducted on samples of window films. The testing was authorized by Paul Neumann of 3M Renewable Energy on June 12, 2014. The testing and data analysis were completed on September 18, 2014.

The scope of our work was limited to conducting abrasion resistance (done at another Element Lab) tests on the samples submitted and reporting the results.

OBJECTIVE

Determine abrasion properties of the window films.

SAMPLE IDENTIFICATION

The samples were identified as 3M™ Scotchshield™ Safety and Security Film Ultra 600, and Ultra 800

TEST METHOD

The specimens were allowed to condition at standard laboratory conditions of $72 \pm 4^\circ F$ and $50 \pm 5\%$ relative humidity for at least 40 hours prior to testing. Testing was done according to ASTM Standards detailed below, with notes of parameters and/or deviations.

<table>
<thead>
<tr>
<th>Test Method</th>
<th>Test Method Title</th>
<th>Parameters and/or Deviations from Method</th>
</tr>
</thead>
</table>
| ASTM D1044 | Standard Test Method for Resistance of Transparent Plastics to Surface Abrasion | Wheels: CS10F
Weight: 500 g
Cycles: 100 |

CALIBRATED TEST EQUIPMENT

Byk Gardner Haze-Gard Plus, PT-173-021, Calibration Due: Per Use
Haze standard, ID PT-173-022 - Calibration Due: 10/10/2014
Tabor Abrader, ID PT-173-024 - Calibration Due: 02/05/2015
Temp/Humidity PT-172-074 – Calibration Due: 1/31/2015
TEST RESULTS

Abrasion

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Haze %: Original</th>
<th>Haze %: Abraded</th>
<th>Change in Haze (% ABRASION)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600-1</td>
<td>3.69</td>
<td>6.89</td>
<td>3.20</td>
</tr>
<tr>
<td>600-2</td>
<td>4.92</td>
<td>7.58</td>
<td>2.66</td>
</tr>
<tr>
<td>600-3</td>
<td>3.59</td>
<td>6.73</td>
<td>3.17</td>
</tr>
<tr>
<td>Average</td>
<td>4.07</td>
<td>7.07</td>
<td>3.01</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>0.74</td>
<td>0.45</td>
<td>0.30</td>
</tr>
<tr>
<td>800-1</td>
<td>4.99</td>
<td>7.33</td>
<td>2.34</td>
</tr>
<tr>
<td>800-2</td>
<td>4.97</td>
<td>7.91</td>
<td>2.94</td>
</tr>
<tr>
<td>800-3</td>
<td>4.24</td>
<td>77.60</td>
<td>3.36</td>
</tr>
<tr>
<td>Average</td>
<td>4.73</td>
<td>30.95</td>
<td>2.88</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>0.43</td>
<td>40.40</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Respectfully submitted,

[Signature]

William Stegeman
Advanced Materials Manager
Product Evaluation Department
P 651 659 7230

F:\Product\Advanced Materials\Customers & Prospects\3M\ESP017051P 3M Renewable Energy\ESP017051P 3M Ultra Abrasion Rpt.docx